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Introduction 

The notions of ratio and proportionality change markedly from 
classical mathematics to the 19th century, when they achieve the form 
they have retained to the present day. This paper intends to chart the 
development of this process in the early modern period. It will show, 
in particular, that 16th-century algebra and the so-called abbaco books 
played a crucial role in bringing about the transformation of the 
classical notion of ratio. 

Defined as «a short of relation in respect of size between two 
magnitudes of the same kind», a ratio was not a number nor a 
geometrical magnitude in Euclid's Elements (1). Ratios can be compared 
to one another, for two ratios whatever are always either equal to each 
other or one is greater than the other. This is property that numbers 
have, but magnitudes have not in the Elements-a segment cannot be 
compared to a plan e figure, nor a plan e figure to a three-dimensional 
magnitude. Ratios can as well be composed among themselves, and they 

(*) An earlier version of this paper was written in the spring of 1985, when I was a 
firts-year graduate student at Princeton University: I benefited from comments and 
criticism from profes sor M.S. Mahoney and from then my fellow graduate students R. 
Nebeker, J. Carson and E. Sageng. 
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yield ratios. This is another property ratios have in common with 
numbers. Because of these similarities, during the first half of the 18th 
century ratios were identified with numerical magnitudes for all prac
tica! purposes. 

It is my contention that in order to understand the changing notions 
of ratio and proportionality in the early modern period two questions 
are to be answered separately. One concerns the numerical status of 
the objects compared through a ratio, or terms of the ratio. The second 
question concerns the status of ratios temselves. Ratios may be iden
tified with numbers easily, once it has been settled that a radio is a 
relationship between two numbers. Probably for this reason it has been 
hitherto overlooked that the two difficul ties were solved in separa te 
stages. In what follows I shall contend that by the turn of the 17 cen
tury the first of the difficulties just men tioned had been overcome. 
Geometrical magnitudes were handled through their numerical 
measures for all practica.1 purposes, and ratios were commonly 
understood to be relations between numerical magnitudes. In study
ing this development particular attention is paid to the problem of 
evaluating the influence of the medieval notion of denomination of 
ratios. Thanks to Pedro Núñez's algebra book it is possible to show that 
this concept had become fossilized and lost its virtuality as an 
«arithmetizing» agent by the mid 16th century. Rather, the changes 
overcoming ratios and proportionality in the 16th century are 
understandable only with reference to the social background, and par
ticularly to the educational role of the abbaco books during the 15th 
and 16th centuries. 

The paper examines first the place of the so-called abbaco schools 
in Renaissance society; next, it dwels on the notion of proportionality 
set forth in the abbaco books and in medieval treatises, and finally it 
studies the treatment received by ratios and proportionality in the 
works of Núñez, Stevin, Viete and Oughtred. 

Mathematics, abbaco schools, and Renaissance society 

Mathematics enjoyed a growing social appreciation during the 
Renaissance. We know, for instance, that a lecture by Luca Pacioli on 
Book V of the Elements could gather at least 94 outstanding humanists 
and citizens of Venice in 1508 (2). We know also that there was con
siderable fascination with applied mathematics. In the 15th century and 
in the first half of the 16th century there is hardly any reference to the 
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abstract, axiomatico-deductive character of mathematics as a feature 
responsible for the superior certitude of mathematical truths. As a mat
ter of fact, little more than lip-respect was paid to the great texts of 
classical mathematics befare the first quarter of the 16th century. As 
early as about 1400 good Greek copies of the major classical 
mathematical sources, including Euclid's Elements , were available in 
the humanist libraries of Florence, Rome and Venice (3). Yet not until 
the 1530's and 1540's <lid the systematic edition of classical mathematics 
start (4). We know of Maurolico's motivations through his letters to Car
dinal Bembo in 1536 and 1540. Making classical mathematics widely 
available, he says, is urgent because mathematics are most useful to 
«physicians, lawyers, farmers, sailors and merchants» (5). This was the 
favourite song played to mathematics during the 15th and 16th cen
turies and almost the only one until abou t 1550. This fascination with 
the practica! uses of mathematics is adequately conveyed by Raphael's 
celebrated School of Athens (1510), where he portayed Phythagoras and 
Euclid as contrasting figures surrounded by two separated groups of 
disciples. While Pythagoras, presented as a follower of «Plato, was 
teaching harmony, Euclid wa� teaching geometry. Presented as a 
follower of Aristotle, and having Raphael himself among his students, 
Euclid meant knowledge about physical, useful things concerning 
painters, archi tects and engineers, rather than a way to contempla te 
an unchallengeable truth. 

As his father told the story, in the 1470's Nicolo Machiavelli attended 
a scuola de grammatica between age seven and ten. Until the age of 
twelve he studied with a maestro d'abbaco, to begin afterwards the study 
of Latin classics (6). Slightly shorter than the average stays for people 
who éventually attended university, the number of years Machiavelli 
spent in each educational level is yet representative of the intellectual 
training received by educated people in 15th-century Italy (7). As it has 
been shown recently, abbaco schools are of capital importance for the 
development of mathematical thought in the 15th and 16th centuries 

«The development of algebra in Italy ... took place primarily within 
the abbacus tradition, the circle formed by the maestri d'abbaco and 
their followers, together with the treatises and problems that the com
posed and passed to each other» (8). 

The content of the abbaco treatises that survive give us a sense of 
the mathematical knowledge proper to the abbaco tradition: «The bulk 
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of their space is .. devoted to the working out of problems, predominant
ly commercial problems like pricing, monetary exchange, barter, part
nerships, interest, and discount», but also recreational problems. «In 
arder to salve these problems the texts usually use ... standard methods ... 
The most important of these are the rule of three, the rules of single 
and double false position, and algebra» (9). The abbaco tradition 
originated in fourteenth and fifteenth century Italy thanks, particulari
ty, to the large class of merchants, clerks, and shopkeepers engendered 
by Italy's central position in the economy of the period (10). Spreading 
from Italy, this tradition was well established and flourishing all over 
Europe by the turn of the 16th century, when printed editions of com
mercial arithmetics, the direct off springs of abbaco treatises, became 
common (11). 

The abbaco schools had a marked urban mercantile character, a 
character plainly manifest in the abbaco books that have come down 
to us. Most of the problems there solved had a strong applied character, 
involving different instances of proportional division. Y et in these books 
proportionality was anything but a theoretical notion. Composition of 
ratios, equality of ratios, denomination of ratios, classification of ratios 
in rational and irrational, or in ratios of equality and inequality, no
tions which were very important in the classical and medieval treat
ment of ratios, are altogether alien to abbaco books. As we will see 
below, the medieval mathematical tradition was concerned in setting 
up an arithmetic of ratios. The maestri d 'abbaco, on the other hand, 
were interested in proportionality only as a relationship linking three 
or more numbers. So, while dealing with proportionality as a series 
of numerical rules computationally useful, they did not use, nor study, 
the notion of ratio in itself. On the other hand, Abbaco books featured 
a new understanding of numbers which identifies them with measures; 
a new importance given to problems rela ted to the determination of 
geometrical measures; and a new emphasis in the arithmetical skills 
needed to handle radical numbers. 

The abbaco treatise by Piero della Francesca, famous painter and 
unknown but worthy mathematician, is a perfectly good example of the 
links between abbaco books and the origins of algebra. Written in the 
third quarter of the 15th century, della Francesca's treatise is of in
terest in itself far an attempt to salve algebraic equations of degree 
higher than two (12). It contains also the only reference I know of in 
modern times, prior to Simon Stevin's 1685 Arithmetique, to the Eucli
dean algorithm far the great common multiple of integers (13). 
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As an example of how proportionality carne to treated algebraicaly 
we shall examine a proportionality problem solved by della Francesca. 
Two numbers are sought such that one is the same part of the other 
as 3 is of 4, their product being 10 + .Jl O. Whitour further explana
tion, della Francesca calls the two numbers 3x and 4x and then sets 
forth the ensuing equation: 

Poni che il primo numero sia 3 cose [3x] e l'altro 4 cose [3x]; mon
tiplica 3 cose via 4 cose fa 12 censi [12x 2], li quali sono equale a 10
e radici de 10 04). 

Clearly there is nothing operationally new in the rules abbaco books 
used to <leal with proportionality, for they were already present in the 
so-called arithmetical books of Euclid's E lements (15), Yet in practice 
the rules were mostly useless there, for they were applicable only to 
integer numbers, and not even generally. Abbaco books, however, had 
no scruple in handling fractions and radicals as if they were integers. 
A mathematical practitioner who followed the arithmetical rules set 
forth in abbaco books used fractions and radicals in ways that the 
faithful follower of Euclid was not allowed. In this way, by casting them 
in a new syst,em of numerical notions, abbaco books gave to the old, 
well-known arithmetical rules governing proportinality in the Elements

a new meaning and importance. 
Most interestingly, as Baxandall pointed out, the mathematical pro

gram of the abbaco schools expresses itself through the new tastes of 
the time. The painter and mathematician Piero della Francesca, Luca 
Pacioli's work and ties with Leonardo da Vinci, or the relationship bet
ween Brunelleschi and the cosmographer and mathematician Paolo 
Toscanelli are well-know examples of the intellectual affinity between 
artists and mathematicians of the Italian Renaissance. Artists and 
patrons, Baxandall has shown, were able to agree in evaluating a 
perspective based picture because they shared the mathematical skills 
needed to understand the painting (16). 

Yet it may not have been adequately emph_asized till now that the 
Renaissance taste for the geometrical organization of visual space, and 
the emphasis on geometry as the ha.sis for the visual arts in general, 
entails a new understanding of mathematics. In the visual space 
represented realistically, or perspectively organised, lengths and 
geometrical figures were measured and their numerical proportions 
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harmoniously rearranged on a plane surface (17). Preoccupation with 
the actual numerical proportions to be given to human figures is para
mount in Dürer's geometrical sketchs of bodies, as well as in Leonar
do's (18). The way in which geometrical proportions were handled in 
painting textbooks, as far example in della Francesca's De prospectiva 
pingendi, is also good evidence of the numerical approach -as oppos
ed to the non-numerical approach faund in Euclid's Elements- to 
geometry used by Renaissance artists. 

To summarize, the mathematics taugh t in the abbaco schools, and 
the geometry taught in perspective treatises, conveyed an understan
ding of proportionality which was in important respects different from 
the way proportionality was treated in Euclid's Elements. As we shall 
see now, it was also different from the treatment it received in scholastic 
treatises, sorne of them still used by university teachers in the late 
Renaissance-for instance Jordanus Nemorarius' Arithmetica, which 
knew severaÍ editions in Paris from 1495 on. Now in arder to study in 
technical detail the way in which ratios and proportionality changed, 
we need first summarize the main features of the classical and medieval 
tradition. This is not merely an erudite exercise, far it has been argued 
that internal conceptual developments taking place within this tradition 
opened the way to changes in the notions of ratio and proportionality. 

Scholastic medieval developments 

· Vis-a-vis the genuine Elements, the more substantial variations oc
currying in medieval versions of Euclid's Elements cluster around the 
notion of proportionality (19). They are, on the one hand, the modifica
tions introduced into Definitions 4 and 5 of Book V and, on the other, 
the suppresion of Proposition 12 of Book VI and the addition of an 
spurious postulate to Book 1 (20). 

Definition 5 in Book V (briefly, V-5) of Euclid's Elements, the ge
nuine Eudoxian definition of equal ratios, reads t_hus: 

188 

S. Magnitudes are said to be in the same ratio, the first to the se
cond and the third to fourth, when, if any equimultiples whatever be 
taken of the first and third, and any equimultiples whatever of the 
second and fourth, the former equimultiples alike exceed, are alike 
equal to, or alike fall short of, the latter equimultiples respectively 
taken in corresponding order (21 ). 
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Definition V-4 merely states the condition of existence of a ratio bet
ween two magnitudes whatever: 

4. Magnitudes are said to have a ratio to one another which are
capable, when multiplied, of exceeding one another (22). 

In the Adelard-Campanus version of the Elements, the standard 
Euclidean text from the middle of the 13th century until the 16th
century editions of humanist inspiration, the following statements 
substituted Definitions 4 and 5: 

4'. A, B, C are continuous proportionals if and only if nA, nB, nC 
are so. 

5'. A, B, C, D are proportional if and only if nA, mB, nC, mD are 

so (23). 

These are meaningless definitions, to be sure, which show that the 
equality of ratios was deemed somehow known without the rules con
tained in the Elements. Evidence to support this comes form the 
spurious definition we find added to Book VII of the Elements (and even 
to Book V in sorne versions), that is the definition of the equality of 
ratios through the equality of their denominations.

Scholastic treatises dealing with ratios and proportionality introduc
ed the notion of denomination (denominatio) of a ratio. Among the first 
occurences of this notion are those we find in Jordanus Nemorarius' 
work, in the first quarter of the 13th century. In Jordanus' definition 
the deiiomination of the ratio (A:B) was that which results in the divi
sion of the antecedent, A, or first term of the ratio, by the consequent, 
B, or second term: «Denominado vero proporcionis huius ad illud est 
quod exit ex divisione huius per illud» (24). Jordanus' words <lid not
mean that, for instance, the ratio of 20 to 12 is the number 1.666 ... 
My anachronistic use of decimal fractions is just a way to underscore 
how anachronistic it is to apply to Jordanus' words their present mean
ing, for they clearly belong to he context of the medieval classification 
and naming of ratios (25). Thus, by dividing 20 by 12 we get 1 + 2/3, 
which allows us to determine that the ratio of 20 to 12 is the super
bipartiens thirds (26). In general, assuming A and B commensurable 
and A > B, the division of the antecedent A by the con�equent B yields 
an integer number plus a fraction, which in turn determines the name 
of (A:B). According to Murdoch, J ordanus' De elementis arismetice, or 
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Arithmetica, clearly influenced Campanus' edition of the Elements.
Coming from J ordanus, in particular, is the definition of the equality 
of ratios through the equality of their denominations, which Campanus 
added to Book VII (27). 

Campanus explicitly warned that denominations cannot be used 
everywhere, for only ratios between commensurable terms -in prac
tice, between integer numbers- have denominations. However, once 
established in Book VII of the influential Campanus edition, the new 
definition of equality o ratios -that is, that ratios are equal which 
denominations are equal- became the 5", generally accepted defini
tion of equality of ratios, seeped back to Books VI and V, and con
taminated the Eudoxian theory of ratios. La ter versions of the Elements,
as well as most scholastic mathematical treatises, not,anly took up the 
new definition· using denominations, but also substituted it for the ge
nuine Eudoxian definition of equality of ra tios. Roger Bacon, Bradwar
dine and Albert of Saxony, among others, completely failed to 
appreciate the necessity of the original, involved definition (28). 

This failure, coupled to Campanus' transformation of the genuine 
Definition V-5, must be construed as a failure to recognize the 
anumerical character of Euclid's geometry. Lines, figures and geometric 
bodies had no measures in the Elements. Quadratures and cubatures 
yielded a ratio or comparison between two figures or two bodies, but 
did not yield a number. This understanding of geometrical objects ex
cluded a priori that the equality of two ratios (A:B)=(C:D), be defined 
in general through the equality of the cross products, Ax D=B XC, for 
these products did not exist as such. This particular characterization 
of the equality of ratios, however, is possible when the terms of the 
ratios are numbers, and Euclid did not fail to use it in Books VII, VIII, 
and IX, the so-called arithmetical books of the Elements . Dealing with 
positive integer numbers exclusively, these books salve, among other 
things, several questions concerning proportionality, such as how to 
determine the fourth proportional term to three given numbers. It is 
important to underline that similar questions had been previously solv
ed in Books V and VI. However, the answers to these questions are dif
ferent there, for they consisted of geometrical constructions (29). 
Classical mathematics, therefore, featured a rigid distinction between 
general magnitudes devoid of measure, to which apply the results on 
proportionality set forth in Books V and VI, and numbers, to which 
apply Books VII, VIII, and IX. This rigid compartmentalization between 
geometry and arithmetic in the Elements is what openly disappears in 
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the 16th céntury, when the notions of geometrical object and number 
both change, as we shall see below. 

That this rigid distinction had started to crumble in the 13th cen
tury is not only revealed by the failure to preserve the genuine Defini
tion V-5, but also by Jordanus Nemorarius' failure to understand the 
purely arithmetical character of Books VII, VIII and IX. In one of his 
best known works, De numeris datis, Jordanus deals with proportionali
ty in a way that very much illuminates this point (30). He included there, 
without demonstration, that the cross products of faur numbers are 
equal when the numbers are proportional, and then grounded on this 
result the so-called golden rule far finding the faurth proportional to 
three given numbers, that is, that x = ab/c is the faurth proportional 
to a, b, ande (31). Proposition 1 from Book III uses the same argument 
to deduce that x 2

= -Jab is the mean proportional to the numbers a and 
b. Again, Jordanus was not offering new results here, far the
arithmetical books of the Elements contain all of these results, and
many others (32). What sets Jordanus' work apart from the Elements
is that the Elements clearly state and prove conditions of existence far
the proportional means obtained through rules involving arithmetical
operations (33). Conditions of existence are important to Euclid because
arithmetical operations will not give us integer numbers necessarily.
This is particularly the case with roots, but even the faurth propor
tional, x = ablc, may not exist if ah is not divisible by c.

Jordanus was not concerned by the conditions of existence Euclid's 
rules required to ensure their applicabili ty, which probably indica tes 
he did not take over the strong Euclidean requirement that operations 
between positive integer numbers are only acceptable if they yield 
positive integer numbers. On the other hand, and this sets Jordanus 
apart from the 16th-century algebrists, he did not work with a novel 
notion of number broad enough to comprehend radical quantities as 
well as integers and fractions. To.be sure, we do not find such quan
tities used anywhere in Jordanus' works. In De numeris datis, in par
ticular, all the numbers involved in computations of proportional terms 
are well chosen enough as to yield always integer solutions (34). 

Scholastic books dealing with ratios considered irrational numbers 
only ocassionally, usually in the context of making it clear that the 
author knew the existence of ratios other than those between integer 
numbers. As far as I know, the notion of denomination of a ratio bet
ween integer numbers or commensurable magnitudes was never ap-
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plied as such to irrational ratios. No scholastic mathematician, for 
instance, took the denomina tion of the ratio between the diagonal of 
the square and its side, or (2:1)½, to be the number ../2, which results 
from assuming the antecedent to be ../2 and then dividing the ante
cedent by the consequent. While the denomination of a rational ratio 
-that is, one between integer numbers- is found through a simple
division, irrational ratios were given denominations of a different
kind.

Nicolas Oresme's account of the denomination of irrational ratios 
is the fullest we know of (35). Oresme made extensive use of denomina
tions of ratios, both rational and irrational, in order to compare them 
and decide about their commensurability in the exponential sense. In 
modern terms, Oresme called two ratios A and B commensurable when 
two integer numbers m, n exist such that A=B mtn. In order to see how
Oresme introduced the distinctiori between mediate and inmediate 
denominations we shall deal with the ratio the diagonal of the square 
bears to the side, or (2:1)½. According to Grant -but the matter has 
received other interpretations, since Oresme's ideas were imperfectly 
expressed- this ratio was immediately denominated by ,the radio (2:1) 
and mediately denominated by the number 1/2 (36). Medieval mathemati
cians often used additive language to express the composition of ratios. 
Thus, for instance, the ratio (A:B) 2 was called a ratio double of (A:B), 
and (A:B) was one third of (A:B) 3• Two commensurable (in Oresme's 
sense) ratios A and B were said to bear the ratio (m:n), if A=Bmln. The 
very title of Oresme's important treatise, De proportionibus propor
tionum, makes reference to this peculiar understanding of ratios bet
ween ratios (37). One of the main topics in Oresme's treatise is the study 
of the conditions under which ratios of ratios existe (3 8). In order to 
do so, first Oresme studied ratios (exponents, that is) between ratios 
among integer numbers, or rational ratios. He demostrated results such 
as, «No multiple ratio is commensurable to any greater non-multiple 
ratio» (39). On these results Oresme based his study of commensurabili
ty of ratios in general and here is where mediate and immediate 
denominations are importan t tq Oresme. In order to know, for instance, 
whether the ratio A=(2:1)½ is commensurable with the ratio B, then 
the ratio C immediately denominating B is needed; for instance, if 
B=(4:1)3, the C=(4:l). Once C is compared to the ratio immediately 
denominating A, (2:1) in this case, a conclusion is reached about the 
commensurability of A and B (40). 
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In Oresme's treatise, as Murdoch has already pointed out, denomina
tions were not used to perform operatios between ratios, or to dilucidate 
equality of'ratios. In fact, Oresme's denominations of irrational ratios 
are quite useless in this respect (41). 

We shall turn now to look closely at the changing way in which ratios 
and proportionality were handled in the second half of the 16th cen
tury. An important question is, what happened to the notion of 
denomination in the 15th and 16th centuries? As we shall see now, a 
partial answer can be found in Pedro Núñez's 1567 algebra book, which 
still contains resonances of the medieval theory of ratios. 

Pedro Núñez (1502-1577) 

Even though it does not contain innovative results comparable to 
those in Cardano's Ars Magna, nor is it so comprehensive and well 
organised as Stevin's L'Arithmetique, Núñez's 1567 Libro de Algebra 
en Arithmetica y Geometria is an excellent cossist book. As is known, 
Stevin was acquainted with it and credited Núñez with leading him to 
apply Euclid's algorithm to polynomials (42). 

Tbe Libro de Algebra is divided in three parts. Very short, sorne 20 
small sheets, the first part sets forth the resolution of first and second 
degree equations. Very long, sorne 200 sheets, the last part contains 
a collection of arithmetical and geometrical problems. The second part, 
sorne 100 sheets, contains a careful exposition of the theory of ratios 
and proportionality, which occupies sorne 50 sheets, along with sections 
explaining the handling of roots and polynomials. Núñez considered 
proportionality a privileged subject to provide rigorous foundations to 
algebraic rules. That proportionality has not been placed at the begin
ning of the work, the reader is told, neither makes the work less 
rigorous, nor is the ordering of the tapies inconsistent with the groun
ding role of proportionality (43). 

Núñez's account of proportionality is not particularity innovative. 
Its interest for the history of mathematics comes rather from the 
opposite direction; it has the kind of interest fossils have. We find in 
Nuñez's account the tapies already present in Oresme, and we find them 
developed with more clarity but with the same limitations. According 
to Núñez, the denomination of a rational ratio (A:B) of greater inequality 
(that is, such that A > B) is the number by which the antecedent A com
prehend the consequent B or exactly or with one part or with severa! 
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parts (44). Núñez then teaches how to go from the ratio (from its name, 
in fact) to its antecedent and consequent. The name of the radio says 
how many times the greater term contains the lesser. For instance, given 
the ratio supertripartiens fourths, we know that the antecedent is more 
than once contained in the consequent but less than twice (because of 
the prefix super). Furthermore, tripartiens fourths tells us that the given 
ratio is the ratio of 1 + 3/4 to unity. By transforming these numbers in
to 7 /4, adds N úñez, we know that 7 and 4 are the numbers (sic) of the . 
given ratio (45). To know whether two numbers are the least ones which 
correspond to a ratio, they should be taken as numerator and 
denominator of a fraction and simplified as such: 

[C]omo si fuesen denominador y numerador de un quebrado, y si
no se pueden mas abreviar, diremos que ellos mismos son los mínimos 
de su proporción (46). 

To find what the proportion is that two given numbers bear other, 
the greater of them must be divided by the lesser. The quotient is the 
denomination, which readily determines the name of the ratio, that is, 
the ratio itself (47). 

Núñez mentions two methods to carry out the composition of ratios, 
the multiplication of denominations, which applies only to rational pro
portions (48), and the product of antecedents and consequents (49). The 
latter is demonstrated using that, by Eudid's Proposition V-15, 

(A:B)=(AxC: BxC) and (C:D)=(CxB:DxB). 
Now, the composition of (AxC: BxC) and (CxB:DxB), because the term 

B XC is the consequent of the former and the anteceden t of the latter, 
is (AxC:D X B), wherefrom the rule follows (SO). It should be noticed that 
Núñez's proof is incomplete, because Proposition V-15 of the Elements 
states that (A:B)=(mA:mB), only if m is an integer number. 

Let us consider Núñez's understanding of denominations of irra
tional ratios. In page 75 R, where denominations are first mentioned, 
we are told that « .. .le dan [a la proporción] por esta causa quantidad, 
y sera la quantidad de la proporción la su denominación», and then he 
goes on to define the denomination of a rational ratio in the terms men
tioned above (51). In this context Núñez explains that the denomina
tions of irrational ratios cannot be numbers, which according to the 
usage of the time means that they cannot be rational numbers. Núñez 
<lid not fail to introduce mediate denominations for irrational ratios: 
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Algunas de las [proporciones] irracionales son denominadas de pro
porciones inmediatamente, y de números mediatamente. Exemplo, la 
proporción que tiene R.2. [✓2] para la unidad, es irracional, y es la 
mitad de una proporción dupla. Toma luego la denominación de la 
proporción dupla inmediatamente, y del número 2 que es denominador 
de la dupla, mediatamente. 

Acoording to Núñez, the ratio (2:1)½ is immediately denominated 
by the ratio (2:1) and mediately by 2, the 2 coming from (2:1) (52). 

The important notion in the denomina tion of irrational ratios, for 
Núñez as for his medieval predecessors; was the immediate denomina
tion by a ratio. This notion was operatio:p.ally meaningful because allow
ed the authors to decide about the commensurability (in Oresme's sense) 
of irrational ratios. The number that denominated these ratios mediate
ly was not much more than a rhetorical device, apparently. 

In one respect Núñez departed markedly from the medieval treat
ment of ratios and proportionality: He freely used radical numbers as 
terms of ratios, when he explained how to <leal with arithmetical pro
blems involving proportions. This was a common feature of cossist 
algebras and abacco books. Not common was, however, Núñez's in
terest, equal to Stevin's, in providing a rigorous foundation for algebraic 
manipulations of this kind. According to Núñez, Euclid's Elements pro
vided solid foundations for the arithmetical rules involved in the handl
ing of proportionality, including those concerning radical quantities. 
Historically this is very interesting, for, as remarked above, the 
Elements discriminated between rules for integer numbers and rules 
for continuous magnitudes, a distinction which was no longer present 
in 16th-century algebra books. 

There are two instances in which Núñez's references to Euclid are 
telling. In order to prove the golden rule, also called rule of three, which 
determines arithmetically the fourth propotional to three given 
numbers, he uses Book VI of the Elements (53). Book VI proves indeed 
the equivalence of (A:B)=(C:D) with a (geometrical) result that may be 
translated as BxC=AxD, provided that the last equality is not understood
as a numerical one (54). This is why Book VI fails to mention the rule 
D = BAC (which is Núñe's rule of three) as a way to determine the fourth
proportional. As mentioned above, the one legitimate way to determine 
a fourth proportional in Book VI comes through the geometrical con
figuration associated to the so-called Thales theorem (55). 

Núñez's second heterodox reading of Euclid is his attempt to 
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ground the computation of proportional means upan Book VIII of the 
Elements. After stating that the two proportional means between 2 and 
5 are 3-'120 and 3-J50, he explains his procedure by a direct reference 
to those propositions in Book VIII in which two integer numbers x and 
y are determined such that (B:y) = (y:x) = (x:A), provided that A and B 
are two given cubic numbers (that is, A=a3 and B=b3

, for two integers 
a,b). Now, Núñez is not applying this rule to cubic numbers, but rather 
to two integers whatsoever. Moreover, Núñez concludes by pointing 
out that the same rule holds for quantities which are not numbers, 
for instance -J2 and -J3. He warns the reader that the foregoing. 
demonstration will not apply here, yet, he adds without further ela
boration, it will be easily transformed in one that applies to such cases 
(56). 

As said at the outset, Núñez offers us a fossilized theory of propor
tions with which three alíen notions had been aggregated: the free use 
of radical quantities, the new arithmetical role played by antecedent 
and consequent terms of ratios, and the aritmetical treatment (that is, 
with the rules set forth in Books VII, VIII and IX of the Elements) of 
problems of proportionality involving geometrical magnitudes (which 
required the techniques and results of Books V and VI). The next im
portant step in this development was given by an attentive reader of 
Núñez's Libro de Algebra, Simon Stevin, to whom we now turn. 

Simon Stevin (1548-1620) 

Stevin's (1585) L'Arithmetique is the most developed and comprehen
sive 16th-century cossist algebra. It contains a serious a ttempt to pro
vide a notion of number enconipassing the classical notions of integer 
number and geometrical magnitude (57). Stevin's Traité des incommen
surables grandeurs also shows him committed to a program of 
arithmetization of Euclidean geometrical magnitudes. Yet, even though 
he erased conceptual distinctions between integrer numbers and radical 
quantities, he was not able to take ratios and proportionality out of their 
traditional conceptual framework and problematique. Thus, for in
stance, Stevin define the ratio between two arithmetical term as «la 
mutuelle habitudez selon la quantite entre deux ou plusieurs termes» 
(58). This common definition was followed by the classical distinction 
between ratios of equality and inequality, by an account of commen
surability, and by another of the scholastic nomenclature. 
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Stevin introduced the notion of «arithmetical term» to cover racines
(radical numbers) and «arithmetical numbers» (rational numbers), thus 
granting the same logical status to radical numbers -the only non ra
tional numbers known by then- and to rational numbers (59). While 
filling up the gap between rational and radical numbers, Stevin main
tained a clear-cut conceptual distinction between ratios and numbers. 

Two radical quantities are not always commensurable (in the or
dinary sense). In Stevin's example, the numbers -Jso and ✓2 are com
mensurable because 25, the quotient of 50 and 2, has a rational root, 
5. In this case, the ratio between these magnitudes is the quintupla, or
five-times-ratio (note that the ratio is not «five», but «five-times»). When
two quantities, such as -J3 and 2, are not commensurable, says Stevin,
then it is enough to say that their ratio is the ratio of -J3 to 2.

Stevin, as Núñez had done befare, read Euclid in a heterodox way. 
To justify that radio of -Jso to -J2 is (5:1), Stevin reads Proposition VI-22 
from the Elements as allowing him to say that (50:2)=(25:1) implies 
(-JS0:-J2)=(-J25 : -Jl). Proposition VI-22, which applies to rectilineal lines 
and figures, not to their mea sures, states that figures similarly describ
ed upan proportional lines are similar, and conversely, if figures similar 
and similarly described be proportional, the sides will be proportional. 
Stevin accompanies his proof and his reference to Euclid with a diagram 
showing squares that measure 50,2, 25, and l. Their sides measure the 
radical quantities to which Euclid's proposition applies. To prove the 
same result far cubic roots. Stevin's diagram shows cubes, the,sides 
of which are the cubic roots involved in Stevin's proposition. Once 
again, therefare, we have evidence that ! 6th-century mathematicians 
were reading in the Elements what Euclid had not put in it. They read 
the Elements as if geometrical lines and figures were identical with their 
numerical measures. This allowed them to apply results deduced in the 
arithmetical books to segments and figures, and results deduced in 
Books V and VI to any sort of numerical magnitudes. 

Ratios reappear in a very different context, when Stevin explain s 
how to carry out «computations de raisons», and how to apply them 
to commercial problems. This material is no longer part of L 'Arithmeti
que, but belongs rather to La Practique d'Arithmetique, a complement 
to the farmer, more theoretical treatise containing interest tables, the 
famous Dime (the first printed account of decimal fractions), and a 
series of other practica! tools far merchants, gaugers, and surveyors. 
In La Practique d'Arithmetique the composition of ratios is used to salve 
problems about «compound» rules of three, namely problems in which 
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something is proportional to two variables. In this context, Stevin ex
plains why this matter has not been included in L 'Arithmetique. The 
reason is that ratios are not numbers, but rather notions that can only 
be handled through numbers. Their right place, therefore, is within the 
rest of applied arithmetical notions: 

[Q]uelcum me pourroit demander, pourquoy nous ne les avons pas
mi en la precedente Arithmetique, Je luy respons, que icelles computa
tions sont de purs nombres, & que la Raison (comme el apparoistra 
plus amplement a la multiplication des Raisons suyvante) n'est point 
nombre, ains subject, comme les autres matieres auquel s'applique 

. le nombre, parquoy leur lieu n'y estoit pas (60). 

Thus, at the end of the 16th century a leading mathematician 
understood the once sophisticated, basic notion of ratio to be a primary, 
intuitive notion, the use of which was suitably placed at the back of 
the book, along with techniques to solve problems on percentages and 
alligations. As we shall see now, the numerical handling of propor
tionality was very much reinforced by the advent of symbolic algebra. 

Fran9ois Viete (1540-1603) 

Fran�ois Viete's 1591 In artem analyticem isagoge has long been 
recognized as the founding text of symbolic algebra (61). Within this 
important text, Chapter 11, «On the rules of equations and proportions», 
has a special importance, for it contains the first set of (unproved) 
regulations for the formal inderstansing of mathematical symbols. 

From the very beginning Viete emphasized the key role propor
tionality has in his new approach to mathematics. The two last stipula
tions set forth in Chapter II are thus introduced: «A soverein rule, 
moreover, in equations and proportions, one that is of great importance 
throúghout analysis is this», and then follows the characterization of 
proportionali ty by the prod uct of means and extremes: 
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15. If there are three or four terms such that the product of the
extremes is equal to the square of the mean or the product of the 
means, they are proportional. Conversely, 

16. If there are three or four terms and the first is to the sécond
as the second or the third is to the last, t:qe product of the extremes 
will be equal to the product of the means (62). 
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Dealing with species, or general magnitudes freed of particular 
values, Viéte could no longer rest either on intuitively grasping the 
meaning of ratio and proportionality, as Stevin had done, or on the 
original «equimultiple» definition from Book V of the E lements -for 
this definition pressuposses the actual possibility of finding out and 
comparing the equimultiples mentioned in it. Viete, therefore, put the 
emphasis on the characterization of proportionality through the cross 
product of means and extremes- which we may call the algebraic 
characteriza ti on of proportionali ty. 

The whole theory of equations was affected by Viéte's new 
understanding of proportionality. As he stressed in the sentence clos
ing chapter II of the Isagoge, just after stipulations 15 and 16, 

Thus a proportion may be said to be that from which an equation 
is composed andan equation that into which a proportion resolves 
itself (63). 

Proportionality and equations are bounded together in Viete's 
thought. He underlined the proximity between the two notions again 
in chapter V of the Isagoge, and made it to play an important role in 
his Two Treatises on the Understanding and Amendement of Equations. 
Viete viewed any equation, say x3 +ax 2 +bx = c, as equivalent to the 
proportionality. 

x 2 +ax+b: .Je = .Jc:x
As J oan Morse has convincingly shown, the equivalence between pro
portionality and equations plays a crucial role in supporting Viete's 
theory of equations and lends coherence and unity to different parts 
of Viete's work (64). 

Viete's novel algebraic understanding of proportionality also reveals 
itself at the computational level. He nowhere stated tha t a ratio (A:B) 
was to be identified with the fraction A/B, nor used specific symbolism 
to express proportionality in general. Nevertheless, as far as the struc
ture of the mathematical reasoning is concerned, Viete's ratios « behave» 
as if they were fractions. In achieving this, an essential tool was the 
symbolic expressions Viete casted over the rhetorical rules used in 
cossist algebras and abbaco books. Thus, for instance, in Proposition 
I of his Ad logisticem speciosam notae priores, we find the following 

formal examples of the rule which determines a fourth proportional 
(«in» was used to indicate multiplication of species) (65): 

Asclepio-1-1990 199 

(c) Consejo Superior de Investigaciones Científicas 
Licencia Creative Commons 
Reconocimiento 4.0 Internacional (CC BY 4.0)

http://asclepio.revistas.csic.es



First Second Third Fourth Proportional 
A B e B in C 

A 
A quadratum 

B e B in C in D 
D 

A quadratum 
A cubus B guadrat 
D plano z e Bq in C in Dpl 

Z in A cubum 

This and the next example show Viete to be in fact shifting the basic 
rules in which the handling of proportionality stood. Through his em
phasis on the formal rules, he made proportionality rest on its 
equivalence with an equation. Of course, he was able to do so because 
he made one new assumption, that magnitudes whatever, no matter that 
they represent lines, surfaces or bodies, can always be multiplied. The 
magnitudes thus generated would correspond to objects of more than 
three dimensions. 

In arder to see how the handling of propotionality changed through 
Viete's approach, let us turn to his proof that in a series of magnitudes 
in continued proportion the first is to the last as the square of the first 
is to the square of the second. In modern language, 

·f A B A 2 A 1 _ = -, then __ = _ 
B e B2 e 

If A be the first term, says Viete, the last is B quadratum , a result 
A 

that Viete grounds on the table given above. When first and last are 
multiplied by A, their ratio remains unchanged (this is what happens 
according to lsagoge's Chapter II, stipulation 12). Therefore, as A is to 
B quadratum , sois is A quadratum to A in B quadratum , which is B 

A A 
quadratum, obviously. In spite of the substantial lack ofsymbolization, 
it is manifest that, Viete's reasoning es extremely close to ours, when 
we write 
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A 
e 

A 
B2

A 

A.A
B 2.A 

A 

A2

B2
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Although Viete's language is not yet as economical as ours is, we are 
nonetheless far away from rhetorical algebra. Indeed Viete's deductions 
are as economical as ours are. 

Vieté's algebraic understanding of proportionality can be observed 
to evolve further in the work of Oughtred, the founder of the l 7th
century English school of mathematics. In Oughtred's book propor
tionality received the form that it was to have until the early 18th cen
tury. 

William Oughtred (1574-1660) 

William Oughtred's Clavis mathematicae, one of the most influen
tial 17th-century algebra books on that side of the English Channel (66), 
assumes that ratios and proportionality <leal exclusively with numerical 
magnitudes: 

If of foure numbers given, the first bee to the second, as the third 
to the fourth: those four are called proportionall numbers. Now the 
being or habitude of one number to another is found by dividing the 
Antecedent by the Consequent ... (67). 

Thanks to the reduction to the numerical field, Oughtred deduced 
results which Viete had merely stated as unproved regulations in 
Chapter II of his Isagoge: For instance, 

2. Wherefore, if a number multiply two numbers, the products
shaH be proportional to the numbers multiplied (68). 

3. . .. If foure numbers be proportionall, the product of the two
extreames is equall to the product of the two meanes (69). 

4. From hence followes the Golden Rule (so called) of Proportion
[i.e., if «R:S::Z:A», then A=ZS/R] (70). 

lt is unnecessary to describe what is going on here. Oughtred's 
statements, identical with Viete's stipulations in the important chapter 
II of Isagoge, have become obvious deductions. Viete did not justify 
them, doubtless because he recognized the impossibili ty of doing so 
within the framework provided by the Elements. Yet Ougtred disregard
ed this impossibility by focusing on the numerical properties that the 
measures of mathematical objects have. 
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As Oughtred's work shows, the notions of ratio and fraction became 
very clase, when a new and more numerical understanding of 
mathematical objects became predominant during the second half on 
the 16th century. Oughtred defined fractions, or broken numbers, as 
an integer number of subdivisions of an unit. This allowed him to point 
out that «what ration the numerator hath to the denominator, the same 
hath the quantity signified to an unit». Then, as an example, he wrote 
that: 4:5:: .1 :1, and that R:S:: R :l. From this he was able to draw an im-

5 S 
portan conclusion, that (A:B) = C:D) if and only if A = � . In his words: 

B D 

Wherefore the termes of equal parts, or fractions, are proportional. 
[A]nd contrariwise (71 ). 

Oughtred's work also shows that ratios and fractions did not merge 
in the early 17th century. In spite of the numerical understanding of 
mathematical objects. Oughtred always treated ratios and fractions as 
separate, well differentiated notions. In fact he used specific, different 
notations for each one of these notions-a practlce mathematicians 
followed through the 17th century generally (72). 

To Oughtred we are indebted for the modern notation, a:b::c:d (73). 
Independently of each other, and of Oughtred's, two notations for ratios 
and proportionality appeared on the continent in the 1630's, though only 
one reached wide diffusion. Herigone represented the proportionality 
of HG, GA, HB, and BD by 

hg 1r ga 2/2 hb 1r bd. 

(One have to keep in mind that 1r was not used as yet to represent the 
ratio of the circumference to the radius, and that «2/2» was Herigone's 
symbol for equality, while «2/3» consistently stood for our « < », and 
«3/2» for our « > ») (74). The second, more widely used notation comes 
from Descartes, who used it in his notes of 1619-1621. There we find 
1/2//4/8//16/32 for Oughtred's 1:2::4:8::16:32 (75). With minar variations 
Descartes notation was used, but not predominantly, until early in the 
18th century (76). 

The 17th-century symbolical usages here briefly sumarized clearly 
express that ratios were not merely fractions, or divisions between 
numbers, and that proportionality was a special kind of equality not 
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to be confused with numerical equality. Leibniz, in the 1690's was the 
first to urge the use of the same symbols for fractions and for ratios 
and, consistently, the use of the sign « = » to express proportionality. 
Cogent as his reasons wew, « more than a century passed befo re his sym
bolism for ratio and proportion triumphed over its rivals» (77). 

Concluding remarks 

The medieval notion of denomination has been credited with bring
ing about, or a t least facilita ting, the arithmetization of ratios and pro
portionality (78). Yet in Pedro Núñez we have found an essentiaily 
fossilized theory of ratios, including denominations, side by side with 
the treatment of proportionality and ratios characteristics of the ab

baco books and cossist algebras. This treatment included the free use 
of radical quantities and the free applica tion of results originaily in 
the arithmetical books of the Elements to ratios between magnitudes 
of any sort. That the two coIIé;tteral ways of dealing with proportionali
ty did not intermix is most interesting. To us it may appear a trivial 
step to say that the ratio of ✓2 to 1 has a denomination which is the 
result of dividing ✓2 by 1, namely ✓2. According to what we read in 
Núñez, however, that was not the case. Denominations remained a no
tion only applicable to rational ratios and tied to their names, while, 
from the operational, algorithmical point of view, denominations were 
superseded by the use of antecedent and consequent. More generally, 
it can be said that the medieval approach to ratios and proportionality 
was not assimilated by the abbaco and cossist books. Indeed I do not 
know of any other 16th-century algebra treatise, apart form Núñez's, 
containing traces of denominations (79). 

From Jordanus Nemorarius to Oughtred ratios disappeared as a 
mathematical object to reappear as a notion of «common sense». In the 
modern understanding of proportionality no ratios other than the 
numerical ones are taken into consideration. Within the Euclidean con
ceptual framework, however, proportionality dealt with the general pro
perties of ratios of different kinds of things. Pedro Núñez mentions, 
for instance, « numbers, lines, areas, volumes, angles, times, sounds, 
and movements» as different objects to which the theorems of Book 
V of the Elements apply (80). There is something other than a rhetorical 
bent in this long enumeration, for in a very true sense N úñez is saying 
that proportions apply in each case to the objects themselves, no to their. 
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numerical measures (81). From Jordanus to Oughtred, therefore, the 
field in which proportionality applied narrowed. Yet one particular area 
of this field, numbers, broadened to encompass almost all the remain
ing areas. Because of the specialization to the numerical field, study
ing proportionality as a general tool became useless. In this 
rearrangemen t man y of the properties of proportionali ty carne to be 
considered easy consequences of arithmetical laws, and then incor
porated to the lower levels of educational curricula. 

As pointed out in the opening paragraphs of this paper, two different 
difficulties are noticeable in the way leading from the classical 
understanding of ratios and proportionality to the modern one: one con
cerns the status of the terms compared, and the other concerns the 
status of the ratios themselves. It is a historical fact that the two 
difficulties were solved in separate stages answering to different 
motivations. As shown above, a purely numerical understanding of the 
terms compared in ratios was achieved by the end of the 16th century. · 
Central to this achievement was that within the algebraic tradition stem
ming from the abbaco books, Book VI of the Elements (on proportionali
ty among geometrical magnitudes) carne to be read «numerically», 
as if applying to numbers, and simultaneously results from the 
arithmetical books of Euclid were assumed to apply to geometrical 
magnitudes. 

The second difficulty mentioned above cannot be fully unraveled 
here. Evidence stemming from the notational uses of the 17th century 
suggests that the evolution of the notions of ratio and proportionality 
is somehow related to the process of creation of the symbolic algebraic 
language (82). The first stage in the process of creation of modern 
mathematical symbolism ended by the mid 17th century, when the hap
py synthesis of symbolical solutions achieved by Descartes, with minar 
modifications, gained recognition and was widely adopted. The second 
stage ends in the central decades of the 18th century, when what we 
now call trascendent functions (logarithms, sine, and son on) received 
symbolic representation and their handling was incorporated into the 
algebraic language. D' Alembert, in his famous prefatory discours to 
the Encylopédie, plainly expressed the new status that algebraic 
language had gained by then. Geometry, he thought, was logically and 
epistemologically subordina te to algebra. Geometrical magnitudes may 
be used to illustrate algebraic results, but algebra is more general and 
abstract, and provides more efficient proofs than geometry does (83). 
At the same time the key concept of function unmistakably appeared, 
and sorne curves were reinterpreted as representation of functions. 
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At the beginning of the 17th century Galileo, without any kind of 
algebraic notation, used proportions to state relationships among con
tinuously variable magnitudes. At the end of the same century Newton, 
who often represented proportions through algebraic notations, used 
proportions far the same purpose. Proportionality was used through 
the 17th century to express dependency, or functional relationships, 

much as it was used in medieval dynamics. Proportionality alone was 
then available to do this job (84). 

It is justificable far us to conjecture, therefare, that ratios and pro
portionality gained a new and more «modern» status only in the 18th 
century, when a full-fledged concept of function appeared and propor
tionality lost i ts crucial role as the tool to express functional relation
ships. 
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Florence, 1300-1500», Ph.D. Diss., Indiana University, passim. 

(11) For a description of the main features of these books, see my «Les aritmetiques
mercantils», in MALET, A. & PARADís, J. (1984): Els orígens i l'ensenyament de l'algebra sim

bólica, Barcelona, chapter 4, volurne 1, of the Spanish translation Los orígenes del álgebra, 
Barcelona, 1989). For the sources of these works, see VoGEL, K. (1971): «Leonardo da 
Pisa», in GrLLISPIE, C. C. ed., Dictionary of Scientific Biography, IV New York, and Procm, 
B. (1984): «11 Trattato di Paolo dell'Abaco», Annali dell'Istituto e Museo di Storia della 
Scienza di Firenze, 9: 21-39, which contains updated bibliographical references on primary 
sources now available in modern editions. Particularly interesting among them is the 
edition of the Treviso arithrnetic (the first printed commercial arithrnetic) in SWETZ, F. 
J. (1987): Capitalism and Arithmetic, La Salle, Illinois.

(12) JAYAWARDENE, S. A. (1976): «The "Trattato d'abaco" of Piero della Francesca»,
in CLOUGH, C. H. ed., Cultural aspects of the Italian Renaissance New York. The treatise 
is available in the modern edition of ARRIGHI, G. (1970) Pisa, to which all references are 
rnade. 

(13) DELLA FRANCESCA: Trattato, p. 42. 
(14) DELLA FRANCESCA: Trattato, p. 145. 
(15) Books VII to IX, that is. 
(16) BAXANDALL: Painting and Experience, p. 87.
(17) See, for instance, DELLA FRANCESCA'S, Piero (1942): De prospectiva pingendi, 

FAS0LA, G. N.: ed. (Florence). 
(18) PANOFSKY, E. (1955): The Life and Art of Albrecht Dürer, Princeton, 1, p. 262-7, 

plates 312, 316, 317, 319, 322. 
(19) On medieval versions of the Elements, see MuRD0CH, J. E. (1963): «The Medieval 

Language of Proportions», in CROMBIE, A. C. ed., Scientific Change, London; «The 
Medieval Euclid», Revue de Synthese, 3rd ser., 89, 67-94; MAH0NEY, M. S. (1978): 
«Mathematics», in LINDBERG, D. C. ed., Science in the Middle Ages, Chicago, and MOLLAND, 
A. G. (1968-69): «The Geometrical Background to the Merton School», British lournal for 
the History of Science, 4, 108-25. 

(20) Other variations were introduced in the medieval Latin versions of the Elements, 

but they <lid not embody important alterations, as far as the mathematical content is 
concerned; see MURD0CH: «The Medieval Euclid», p. 74-80. Proposition 12, Book VI, pro
vides the construction of the fourth proportional to three given rectilinear segrnents: 
«Two three given straight lines to find a fourth proportional» (cf. Heath ed., Elements, 

II, 215). The proposition disappeared frorn Campanus' edition, but an spurious postulated 
appeared instead, which assured the existence of a fourth proportional term in general: 
«By as rnuch as sorne one quantity is to another quantity of the sarne genus, so rnuch 
is a third [quantity] to sorne fourth of the sarne genus» (cf. MURD0CH: «The Medieval 
Language of Proportions», p. 250; Murdoch points out that the reference to «the same 
genus» seems to be a later addition). The addition of such a postulate is not without 
justification. From the 17th century on many editors and cornrnentators of Euclid, in-

206 
Asclepio-I-1990 

(c) Consejo Superior de Investigaciones Científicas 
Licencia Creative Commons 
Reconocimiento 4.0 Internacional (CC BY 4.0)

http://asclepio.revistas.csic.es



cluding Clavius. Saccheri, Simson and De Morgan, agreed that this axiom filled a logical 
lacuna in the Elements (Elements, 11, 170-4). What the axiom postula tes is tacitly used 
in Proposition V-18, which proves that (a+b):b::(c+d):d, if a:b::c:d, and also in Proposi
tion XII-2, which demonstrates that the circles are as the squares of the diameters. Once 
the axionn was explicitly postulated, Proposition VI-12 became a redundant result, since 
Proposition VI-2, proved that in any triangle ABC, the segment DE parallel to BC cuts 
the sides AB and AC proportionally, and conversely (ibíd., 11, 195-5). 

(21) The Elements, 11, 114. In modern terms, a:b::c:d when for any integer numbers
m and n, ma is greater than, equal to or, less than nb if and only if me is greater than, 
equal to, or less than nd. 

(22) Ibíd. 
(23) MURD0CH: «The Medieval Language of Proportions», p. 256. 
(24) BusARD, H. L. L. (1970): «Die Traktate De proportionibus von Jordanus

Nemorarius und Campanus», Centaurus, 15, 193-227; quotation comes from page 205. 

(25) See MuRD0CH, J. E.: «The Medieval Language of Proportions ». There is no in
controvertible evidence to assign an specific source to Jordanus' definition of denomina
tion. Compare my interpretation with Mahoney's, in «Mathematics», p. 163. 

(26) In the example above, «super» indicates that the ratio.is of the kind 1 +a/b; «bipar
tiens» indica tes that a is two: and « thirds» tells the reader that bis three. On the medieval 
nomenclature of ratios, see MAH0NEY, S.: «Mathematics». 

(27) MURDOCH: «The Medieval Euclid», p. 80. Campanus included this definition as 
the 20th of Book VII. It had already appeared as definition 11-9 in Jordanus' Arithmetica 
(Paris, 1495). 

(28) MURD0CH: «The Medieval Language of Proportions», p. 257-9.
(29) The determination of a fourth term in Proposition VI-12, for instance, is solved 

by a configuration associated to the so-called Thales' Theorem, which establishes the 
proportionality of the segments determined on two si des of a triangle by a line parallel 
to the third side (Elements, 11, 215-6; cf. note 20 above). 

(30) De numeris datis, which somehow reminds the reader of Diophantus' Arithmetic, 
contains 3 definitions and more than a hundred propositions, or rather arithmetical pro
blems. Proposition II-14a, for instance, runs thus: Let from two given numbers be sub
tracted numbers which are in a given ratio and let the product of the remainders be known, 

then the numbers are given, cf. HUGHES, B. ed and trans. (1981), lordanus de Nemore De 

numeris datis, Berkeley, p. 75. Proposition Il-14a admits of the translation, numbers x,y 
such that x/y=d and (a-x) (b-y)=c can always be determined. 

(31) Ibíd., p. 70. 
(32) In the Elements Proposition VII-19 characterizes proportionality by means of 

the equality of the cross products (a, b, e, d are proportional terms if and only if ad=bc). 

Along with the rules that determine the mean proportional as the square root of the ex
treme terms, the Elements also sets forth rules to determine proportional means of higher 
order as roots with higher exponents. 

(33) See, for instance, Propositions IX-18 and IX-19 of the Elements.

(34) To be sure, Jordanus used abundantly of the notion of denomination in this and
other works of his. Thus, for instance, Proposition 2 from Book II teaches how to deter
mine a number when the ratio it helds with a given number is known. In orden to have 

the antecedent, it suffices to multiply the known number by the denomination (sic), which 
means that given the denomination of (A:B), say, superbipartiens thirds, and given B, 
then the multiplication of B by 1 + 2/3 yields A (De numeris datis, Hughes ed., p. 70). Pro-
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position II-3 says that 1 divided by the denomination of (A:B) gives us the denomination 
of (B:A) (ibíd., p. 71). Proposition II-8 states that the sum of the denominations of thre 
ratios that several numbers held to a given number yields the ratio that all the former 
taken together bear to the given number. This may admit the transla tion (A:D) + (B:D) 
+ (C:D) = (A+B+C:D) = (ibíd., p. 72). Jordanus also stated elsewhere that the composi
tion of two ratios whatever is found through the mul tiplication of their denominations 
(Busard, «Die Traktate De proportionibus», p. 205).

(35) On the denominations of irrational ratios, see. GRANT, E. (1986 ): Nicole Oresme
«De proportionibus proportionum» and «Ad pauca rescipientes», Madison, p. 31-5, and 
MAH0NEY, M. S.: «Mathematics». According to Grant, Bradwardine's mention of 
denominations of irrational ratios are among the first we know of. Those ratios are call
ed irrational, says Bradwardine, which are not immediately denominated by a number, 
but only mediately. Any irrational ratio is immediately denominated by a ratio which 
es immediately denominated by a number. («Secundum vero gradum illa tenet quae ir

rationalis vdcatur, quae non immediate denominatur ah aliquo numero, sed mediate tan
tum (quae immediate denominatur ah aliqua proportione, quae immediate denominatu:r 
a numero: ... )»; see CR0SBY, H. L. Jr (1961): Thomas of Bradwardine. His <<Tractatus de Pro-

. portionibus», Madison, p. 66). Although Bradwardine set forth the definition of equal ratios 
based in the equality of denominations, he did not showed himself con cerned in explain
ing how this definition was to be u sed with irrational ratios and their mediate denomina
tions. As a matter of fact, Bradwardine did little use of media te denominations in general. 
Grant points out that, in all probability, Bradwardine's use of denominations stemms 
from a source w hich he did not understand. 

(36) GRANT: Nicole Oresme, p. 31-3.
(37) Ibíd., p. 38 and 49.
(38) As is well known, Oresme's ultimate purpose was to undercut the scientific basis 

of astrology. Once he established that it is unlikely that two unknown ratios be com
mensurable, he argued that «it is most unlikely that the as yet unknown exact ratios of 
planetary motions will be commensurable. [Since] astrology rests on the commensurability 
of those motions, ... astrology is at best scientifically suspect» (MAHONEY: «Mathematics», 
p. 168).

(39) GRANT: Nicole Oresme, Proposition III-2, p. 225.

(40) Ibíd., p. 39. 
(41) MURD0CH: «The Medieval Language of Proportions», p. 261. Oresme certainly

knew of the uses that denominations of rational ratios have from an algorismic point 
of view, for he devpted one of this works, Algorismus proportionum, to <leal with opera
tions between ratios performed through their denominations; see GRANT: Nicole Oresme, 
p. 315.

(42) STEVIN, S. (1958): The principal works of Simon Stevin (5 vols. Amsterdam) II,
474 and 577. On Núñez's Libro de Algebra see B0SMANS, H. (1908): «Sur le Libro de algebra 

de Pedro Núñez», Bibliotheca mathematica, 8, 154-69, and my «L'aritmetica i l'algebra 

a la Península Iberica al segle XVI», in MALET, A. & PARADíS, J.: Els orígens i l'ensenya
ment de l'algebra simbólica (Barcelona, 1984) (chapter 9 in volume 1 of the Spanish transla- . 
tion, Los orígenes del álgebra, Barcelona, 1989). 

(43) Libro de Algebra, p. 66r.

(44) Ibíd., p. 75 v; the notation (A:B) is not Núñez's.

(45) Ibíd.
(46) Ibíd., p. 76 v_ 
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(47) Ibíd., p. 76 v - 7A 
(48) Ibíd., p. 8Sr. 
(49) lbíd., p. 8Sr and 83r.
(50) Ibíd., p. 84 v - 8Sr. Núñez underscores the distance between nis two methods to

compase ratios by grounding them on different proofs; he sends the reader to his book 
on Oronce Finné's quadrature of the circle for a proof of the method which uses the pro
duct of denomina tions. 

(51) Ibíd., p. 75r_
(52) Apparently this is not Oresme's notion of immediate and mediate denomina-

tions, at least not as it was intepreted by Grant. See above, n. 35. 
(53) NúÑEZ: Libro de Algebra, p. 99 v_ 

(54) This is Proposition VI-16 from the Elements.
(SS) Ibíd., Proposition VI-12.
(56) NUÑEZ: Libro de Algebra, p. 104 v - 10sr.
(57) L'Arithmetique, p. 1-5 and 8-10; references are made to Les Oeuvres Mathemati

ques de Simon Stevin (Leyde, 1634). For an account of Stevin's algebra and arithmetic, 
see my Simon Stevin (volume 3 of Los orígenes del álgebra, Barcelona, 1990). On Stevin's 
grounding of a con tinuum of arithmetical magnitudes on a geometrical continuum, see 

· KLEIN, J. (1968): Greek Mathematical Thought and the Origin of Algebra, Cambridge,
Mass, p. 186-97; and D. Struik's account in STEVIN, S. (1958), The principal works of Simon 
Stevin, Amsterdam, IIB, p. 459-61.

(58) L'Arithmetique, p. 15.
(59) STEVIN, however, did not achieve a complete unification of ra tional and radical 

numbers. Thus, according to the kind of magnitudes dealt with, Stevin needs two Unrelated 
propositions to determine the fourth proportional to three given magnitudes. Given three 
rational numbers, a, b, c, Stevin did not feel the need to justify that x = b.da was the 
fourth proportional term; he explicitly restricted the field of applicability of this rule 
to rational numbers (L'Arithmetique, Problem XIV, p. 24). In order to justify this rule 
when applied to radical numbers, Stevin turned to the propositions that set forth how 
to find the ratio between two radical numbers (ibíd., p., 51). 

(60) La Practique d'Arithmetique, p. 177, in Les Oevres Mathematiques de Simon

Stevin. 
(61) On Viete's contribution to the new understanding of mathematics in the 16th

century, see MAH0NEY, M. S. (1973): The mathematical career of Pierre de Fermat, 
Princeton, ch. 2, passim, and KLEIN, J.: Greek Mathematical Thought. The Isagoge is easily 
available through the 1970 reprint of the 1646 Leiden edition of Viete's Opera mathematica. 
Translations come from VIETE (1983): The Analytic Art, WITMER, T. R. ed. and tr., Kent 
(Ohio). 

(62) VIETE, F.: The Analytic Art, p. 14-5.
(63) Ibíd., p. 15.
(64) MORSE, J. (1981): «The Reception of Diophantus' Arithmetic in the Renaissance», 

Ph. D. Diss., Princeton University, p. 155-9. 
(65) Opera mathematica, p. 13. 
(66) On Oughtred's Clavis, see BásMANS, H. (1910-1911): «La premiere edition de la 

"Clavis Mathematica» d'Oughtred», Annales de la Société Scientifique de Bruxelles, 35, 
24-78, and CAJORI, F. (1916): William Oughtred, Chicago. Iri them one can still fin the last 
echoes of the polemic raised by Wallis' chauvinist comparison of Oughtred's and Har
riot's works .with Descartes' La Géometrie, and by his attacks against the latter as a 
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plagiarist fo the English mathematicians. Bosmans and Cajori also specify the main varia
tions introduced in the Clavis in the second and subsequent editions. Quotations come 

) from the 1631 London, edition, Arithmeticae in numeris et speciebus institutio: ... , quasi
clavis est, but are given in their English version in the 1647 edition, The Key of the 
Mathematics new forged and filed. 

(67) Clavis (1647), p. 16.
(68) Ibíd.
(69) Ibíd.
(70) Ibíd.
(71) Ibíd.
(72) See CAJORI, F. (1928): A History of Mathematical Notations, 2 vols, Chicago, I,

p. 275-95.
(73) In fact he used «a.b:c.d» instead of the expression given above. In the 1650's 

WING, V., also an Englishman, substituted the semicolon for the dots (CAJORI; History of 
Mathematical Notations, I, p. 275). 

(74) HERIG0NE, P. (1634-1637): Cursus mathematicus, 5 vols. Paris.°This mathematical 
encyclopedia containing, among many other things, the first printed account of the sine 
law of refraction was very influential on the continent. The example given here comes 
actually from Le Supplement du Cours Mathematique (París, 1642), unnumbered page 
following the ti tle page. 

(75) DESCARTES, R. (1966): Oeuvres, ADAM, C. & TANNERY, P.: eds., 10 vols., París, X, 
p. 241.

(76) DESCARTES <lid not use this, or any other, notation at ali in his 1637 Geométrie, 
although he used it again in a letter written in 1638 (Oeuvres, II, 171). 

(77) CAJORI: History of Mathematical Notations, I, p. 295. 
(78) This view has been more fully defended by MAH0NEY, M.S.: «In short, vía the 

procedure of denomination, ratios carne to be manipulated by the arithmetic of fractions. 
The short-term result was an arithmetization of the theory of ratio and proportion that 
evaded or ignored the subtler aspects of that theory» («Mathematics», p. 164). 

(79) The fossil character of the denomination-based approach to ratios, the fact that 
is survived almosty whithout changes for 200 years, as Nuñez's pages evince, bespeaks 
an intellectual isolationism which hardly corresponds to a notion that would have modified 
other notions. 

(80) Libro de Algebra, p. 70r. 
(81) The distance separating conceptually objects and their measures is neatly pre

sent in Núñez's discussion of the paradox concerning the so-called angle of contingency, 
or angle between a straight line tangent to a circle and the circle itself. Núñez considers 
this angle different from zero, although he accepts as a matter of course that there is 
no rectilinear angle smaller than the angle of contingency. He <loes not even justify that 
the angle of contingency is not nil: it is a visual truth. Furthermore, angles of contingen
cy can be compared one to another. For example, two circles tangent at a point A deter
mine an angle of contingency which is twice the angle between one of the cirdes and 
the straight line tangent to the circles at the same point A. This puzzle origins, accor
ding to Núñez, in this, that the quantities here compared are not of the same nature, 
since we can not overcome a rectilinear angle multiplying the angle of contingency by 
a number. Núñez emphasizes, finally, that the paradox could never arise in dealing with 
numbers, since any number, no matter how small, surpasses a given number, no matter 
how large, when the small is adequately multiplied (Libro de Algebra, p. 66 v - 69 v). 
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(82) On the 17th-century debates concerning ratios and proportionality, see E. Sylla's 
insightful discussion, «Compounding ratios. Bradwardine, Oresme, and the first edition 
of Newton's Principia», in MENDELS0HN, ed. (1984), Trasformation and Tradition in the 
Sciences, Cambridge. • 

(83) D'ALEMBERT, J. (1984): Discurso preliminar de la Enciclopedia, Madrid, p. 50-1 
and 57ff. 

(84) MAIER, A. (1982): «The concept of function in Fourteenth-Century Physics», in
SARGENT, S. D., ed., On the Treshold of Exact Science, Philadelphia, passim. Compare with 
BoYER, C. B. (1946): «Proportion, Equation, Function: Three steps in the development of 
a concept», Scripta Mathematica, 12, 5-13. 
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